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Recovery of classical chaoticlike behavior in a conservative quantum three-body problem
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Recovering trajectories of quantum systems whose classical counterparts display chaotic behavior has been
a subject that has received a lot of interest over the last decade. However, most of these studies have focused
on driven and dissipative systems. The relevance and impact of chaoticlike phenomena to quantum systems has
been highlighted in recent studies which have shown that quantum chaos is significant in some aspects of
quantum computation and information processing. In this paper we study a three-body system comprising of
identical particles arranged so that the system’s classical trajectories exhibit Hamiltonian chaos. Here we show
that it is possible to recover very nearly classical-like, conservative, chaotic trajectories from such a system
through an unravelling of the master equation. First, this is done through continuous measurement of the
position of each system. Second, and perhaps somewhat surprisingly, we demonstrate that we still obtain a very
good match between the classical and quantum dynamics by weakly measuring the position of only one of the

oscillators.
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I. INTRODUCTION

Quantum mechanics is perhaps the most powerful and
useful theory of physics to date. Indeed, with the possible
emergence of many new quantum technologies in areas such
as computation, communication, cryptography, and metrol-
ogy this trend looks set to continue well into the future. With
such strong interest in applications of quantum mechanics
comes a concomitant interest in the measurement process
and the interaction between “classical” and quantum sys-
tems. Indeed, as we wish to understand and apply quantum
mechanics within the context of modern technology we will
need to develop our understanding of what actually consti-
tutes a classical device and how such objects interact with
quantum systems. However, the recovery of classical me-
chanics is not always as simple as implied by a naiveté in-
terpretation of the correspondence principle. This essential
requirement of any physical theory can, for quantum me-
chanical systems, be stated as follows: “If a quantum system
has a classical analogue, expectation values of operators
behave, in the limit h—0, like the corresponding classical
quantities.” [1]

We observe that interpretation of this statement can be
problematic if, for example, we consider quantum systems
that lack a specific dependence on Planks constant [2]. Fur-
ther difficulties arise when attempting to recover the classical
trajectories of classically nonlinear and chaotic systems as
the Schrodinger equation is strictly linear.

We note that these concerns are no longer just of interest
to those studying either the measurement problem or the cor-
respondence principle and the emergence of the classical
world. Indeed this area has a direct impact on quantum

*Electronic address: m.j.everitt@physics.org

1539-3755/2007/75(3)/036217(6)

036217-1

PACS number(s): 05.45.Mt, 03.65.—w, 05.45.Pq

technologies. In order to fully leverage the power afforded
by these emerging fields we must not only understand in
depth the measurement process but also many-body quantum
systems coupled to real environments. This is highlighted by
the recent observation of chaos in the spectrum of Shor’s
algorithm [3] as well as in other studies involving quantum
information processing and quantum chaos [4—6].

A solution to the correspondence problem for chaotic sys-
tems which has been employed with great success is found
by utilizing quantum trajectories methods [7-17]. Here, in-
troduction of environmental degrees of freedom and unrav-
elling the master equation yield stochastic Schrodinger equa-
tions from which chaoticlike trajectories may be recovered.
This process can be considered as comprising of several
steps. First, we make the quantum system of an open one.
This is archived by coupling the quantum object to an envi-
ronment which may take the form of a measurement device.
Once the environment has been introduced we model the
evolution of the system’s density operator (in the presence of
the environment) using a linear master equation. However,
master equations are similar to the Langevin equation insofar
as they only predict a set of probable outcomes over an en-
semble of systems or experiments. Therefore, in order to get
some idea of the possible behavior of an individual experi-
ment we next unravel the master equation. In essence, this
process involves finding a stochastic differential equation for
the system’s state vector with the proviso that the dynamics
given by the master equation are returned in the ensemble
average over many solutions. There are infinitely many ways
to do this each representing a different physical process. In
this work we employ the quantum state diffusion (QSD) un-
ravelling which corresponds to a unit-efficiency heterodyne
measurement (or ambiquadrature homodyne detection) on
the environmental degrees of freedom [16] (for a detailed
introduction to this approach see [18]). Here the evolution of
the state vector |¢) is given by the Itd increment equation
[13,14]
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where the Lindblad operators L; represent coupling to envi-
ronmental degrees of freedom, df is the time increment, and
d¢ are complex Weiner increments defined such that dé&
=dé=0 and déd¢ =dt [13,14]. Throughout this work a bar
over a quantity denotes the average over stochastic processes
while the notation ( ) is used for quantum mechanical expec-
tation values. The first term on the right-hand side of this
equation is the Schrodinger evolution of the system while the
second (drift) and third (fluctuation) terms describe the de-
cohering effects of the environment on the evolution of the
systems state vector.

However, to date the body of work which uses quantum
trajectories to recover classically chaoticlike trajectories has
focused on those systems that are dissipative. There are sev-
eral notable exceptions that demonstrate that continuous
measurement of both driven and undriven conservative sys-
tems can recover classical-like behavior [19-22]. However,
these works consider systems with only a single degree of
freedom. Recently we became interested in whether it was
possible, using a similar analysis, to recover chaotic trajec-
tories of classical, multicomponent, systems undergoing
Hamiltonian chaos. Initially we wished to consider the tradi-
tional three-body problem of classical mechanics for par-
ticles with similar masses [30]. This problem, although his-
torically very significant, is nontrivial to solve.
Consequently, in this work we consider a somewhat simpli-
fied system comprising of three coupled one-dimensional an-
harmonic oscillators.

II. BACKGROUND

The Hamiltonian for our chosen three-body system, com-
prising of one-dimensional anharmonic oscillators with a
quartic potential and unit mass, is given by

3 22,22, 22 4. 4, 4
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22}” P 2 32
(2)

The classical dynamics associated with this Hamiltonian can
be chaotic and are known to have positive Lyapunov expo-
nents [23]. When we consider classical mechanics ¢; and p;
are taken to represent the classical values of position and
momentum. However, when we consider the quantum me-
chanics they are replaced by their operator counterparts. As
we shall always be clear as to which description we are con-
sidering at any one time this does not lead to any ambiguity.

We have already stated one expression of the correspon-
dence principal in quantum mechanics. An alternative defi-
nition, which we find preferable, is to “consider #i fixed (it is)
and scale the Hamiltonian so that the relative motion of
the expectation values of the observable become large
when compared with the minimum area (f/2) in the phase
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FIG. 1. (Color online) An example chaotic trajectory (a) solu-
tions to the classical equations of motion (3) for the initial condi-
tions ¢;=-0.2, ¢,=0.05, g3=0.15 for our chosen system and (b)
scaled quantum expectation values B(g;) and B(p;» versus time for
an unravelling of the master equation with initial state
D;(=0.2/B)D5(0.05/ B)D5(~0.15/ 8)|000) and B=1/2000. Trajec-
tories for oscillator 1 are shown in (magenta) medium gray, for
oscillator 2 in (blue) dark gray, and for oscillator 3 in (green) light
gray. Note, all quantities are dimensionless.

space” [28]. In either case this is the role of the B term in the
Hamiltonian, i.e., 7 — B# so that the smaller 3 the larger the
dynamics when compared to a plank cell.

II1. RESULTS

From the Hamiltonian (2) we find the three classical equa-
tions of motion are

3
g+ ,32<ﬂ > q,.qj.) —0, whereij=123. (3)
8 i

When we solve these coupled equations of motion with the
initial conditions ¢;=-0.2/8, ¢,=0.05/8, g3=0.15/8, and
p;=0 for all i we find that the dynamics are chaotic. We show
the phase portrait for the solutions to these equations in Fig.
1(a) where, without loss of generality, we have set B=1. We
note as an interesting aside, one feature of this system is that
if ¢;=p,;=0 for any i then ¢;=p,;=0 always.

We now proceed to discuss the quantum mechanical de-
scription of these coupled oscillators. Unlike the classical
equations of motion the Schrodinger equation for this, or any
other, system is strictly linear. We find that solutions to the
Schrodinger equation for this system, even for moderate val-
ues of B, delocalize so rapidly that obtaining accurate solu-
tions is not possible for us. This does, however, reinforce the
lack of correspondence between classical dynamics and
Schrodinger evolution for this system.
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Following past work [7-17] on recovering classically cha-
oticlike orbits from a system’s quantum counterpart we solve
the unravelling of the master equation (1) with Hamiltonian
(2). For this example there are three points of note with
regard to possible choices of the environmental degrees of
freedom. First, coupling to an environment helps localize the
system’s state vector and hence produce a well defined,
classical-like, trajectory. Second, as the classical system is
Hamiltonian and therefore conservative, we must choose the
environment of each oscillator so that energy exchange is
minimized between any part of the system and the environ-
mental degrees of freedom. Third, we should specify a physi-
cally reasonable environment.

In this work we have chosen initially one of the most
obvious candidates for the environment which satisfies all
these conditions. Explicitly we have set each Lindblad L;
=kq;, i=1,2,3 corresponding to the continuous measure-
ment of position. This unravelling also corresponds to that of
the master equation for a weakly coupled, high temperature,
thermal environment [19]. Here « represents the magnitude
of the coupling between each component of the system and
its respective environment. In this work we use several val-
ues of . In Fig. 1(b) we use an intermediate coupling (x
=0.1) while in Figs. 2-5 we also present results for weak
(k=0.01) and strong (k=0.5) couplings.

As our initial state, and for the best possible match with
the classical initial conditions, we choose a tensor product of
coherent states for which the quantum expectation values in
position and momentum are centered in g-p phase plane at
q:=-0.2/B, ¢,=0.05/8, q3;=0.15/B, and p;=0 where i
=1,2,3. Alternatively, we can express this initial
condition explicitly as translated vacuum states by
D,(=0.2/8)D,(0.05/ B)D5(=0.15/8)|000) where D;( ) is the
displacement operator in position for each component of the
system. Here we have chosen S=1/2000 as this is the small-
est value for which we can solve (1) both accurately and
within a reasonable time frame. In order to help the reader
quantify the time scale over which our results are presented
we note that the logarithm time associated with our chosen
value of beta is In(1/8) =3.3 [24,25]. This is much shorter
than the period over which we present the evolution of the
system’s trajectories.

In Fig. 1(b) we show the dynamics of the quantum expec-
tation values of the position and momentum operators for
each oscillator. These have been scaled by a factor of 8 so
that they may be compared with Fig. 1(a). Here we see very
good agreement initially, and similar characteristics through-
out, the displayed dynamics. Indeed the trajectories are simi-
lar enough that it is impossible to determine from the graph
alone which plot shows the classical and which the quantum
evolution. We note that these curves begin to differ after a
short period of time. However, this is not unexpected as the
system we are analyzing is chaotic. In order to make the
reasonable comparison of these results readily available we
also include a graph of the evolution of ¢, and {g;) as a
function of time in Fig. 2 for three different couplings to the
environment. It is apparent that there is a very good match
between the quantum expectation values and the classical
trajectory for k=0.01.
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FIG. 2. (Color online) A comparison between the classical po-
sition ¢; (dashed gray) and B(q,) for three different couplings () to
the environment. Note, all quantities are dimensionless.

We note that simply by including an environment our sys-
tem no longer undergoes Hamiltonian evolution. In other
words, in order to be able to recover classical-like trajecto-
ries of quantum systems whose classical counterparts exhibit
Hamiltonian chaos we include environmental degrees of
freedom that imply non-Hamiltonian evolution of the quan-
tum system. However, using a sufficiently low coupling
strength to the environmental results in a concomitant reduc-
tion both in energy exchange between the system and it’s
environment, and the localization of the state vector. We now
verify that the solutions to Eq. (1) are, to good approxima-
tion, conservative. This does indeed appear to be the case for
both intermediate and weak couplings (x=0.1 and 0.01) but
not for the stronger coupling (k=0.5). This can be seen in
Fig. 3 where we show the total energy found by substituting
(g, and {p;) for g; and p; into the Hamiltonian (2), i.e.,

Y Lo B 322 2,32
Energy = 2<Pi> + (g + (g:) <‘Ij> . (4)
i 32 2%
where i,j=1,2,3. We note that we do not compute (H) as

we wish to compare directly with the equivalent classical
calculation.
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FIG. 3. (Color online) Total system energy, with magnified sec-
tion inset, computed by substituting (g;) and (p;) into the Hamil-
tonian (2) for three different couplings (x) to the environment.
Note, all quantities are dimensionless.
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FIG. 4. (Color online) Uncertainty in position [light gray (ma-
genta)] and momentum [dark gray (blue)] as a function of time for
the first component for three different couplings () to the environ-
ment. Values beneath the dashed (green) line indicate squeezing.
Note, all quantities are dimensionless.

Next we verify localization of the state vector by comput-
ing the uncertainty in position and momentum for the first
oscillator for three different couplings to the environment.
Because both Ag;=+\{(g7)—{(g)* and Ap,=\{p})—(p,)* be-
tween components behave in a similar fashion, we do not
show results for the other two oscillators here. As is evident
from Fig. 4 the interaction with the environment causes the
system’s state vector to localize within each of the compo-
nent spaces. It is also apparent from this figure that the level
of localization is dependent of the coupling between each of
the system’s components and their respective environments.
We also note that as the system evolves it’s states become
squeezed in each of the momentum variables. Unlike the
results presented in Fig. 1(b) we have not scaled these un-
certainty values by B=1/2000. Consequently, for direct
comparison with the first two figures the results presented in
Fig. 4 should be divided by 2000. Hence, the uncertainty in
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FIG. 5. (Color online) gl(.z) (i=1) coefficient, with magnified
section inset, as a function of time for three different couplings (k)
to the environment. Classical-like motion yields gl(.2)=1 as this im-
plies a Poissonian statistics for the state of the system. Note, all
quantities are dimensionless.

either position or momentum can be seen to be quite negli-
gible when compared with the trajectory of quantum expec-
tation values plotted in Fig. 1(b).

We can extract further information on the dynamics of
this system simply by borrowing a technique from quantum
optics. Namely through analyzing the photon statistics
(bunching of photons) described by the second order corre-
lations [26,27]

@ _ <",2> - <n1>

' <ni>2 '

Where n is the number operator. Values of g greater than 1
indicate photon bunching where photons arrive in groups
while values of g smaller than 1 indicate antibunching, a
purely quantum mechanical phenomena representing pre-
cisely regular arrival of photons. However g®=1 corre-
sponds to Poissonian statistics and which is what we would
expect from the state of our system should it be undergoing a
classical like evolution. As we can see from Fig. 5 this is
indeed the case (where, again, we have only shown data for
the first component).

In the discussion above we have considered what happens
when we perform simultaneous, continuous, measurements
of the position of each of the components of the system. As
the weak measurement limit is approached we find good
agreement between classical and quantum dynamics and the
system becomes, to good approximation, conservative. We
now demonstrate that there exists a weaker condition under
which we can produce the same outcome. That is, we show
that weak measurement of only one of the position variables
is sufficient to produce, to very good approximation,
classical-like trajectories. As no one oscillator has a privi-
leged status over the others we set, without loss of generality,
Li=kq,, L,=L;=0 with k=0.01 and 8=1/2000. Again we
solve the unravelling of the master equation (1) with Hamil-
tonian (2) and the initial state D(-0.2/8)D,(0.05/8)
X D+(=0.15/8)|000). As we can see from Fig. 6 even under
these conditions we recover quantum trajectories whose ex-

i=1,2,3 (5)
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FIG. 6. (Color online) An example of chaoticlike trajectory for
the scaled quantum expectation values B(g;) and B(p;), for weak
measurement of the first oscillator only. Here L; =«gq,,L,=L3=0 for
x=0.01 and B=1/2000. Quantum trajectories for oscillator 1 are
shown in (magenta) medium gray, for oscillator 2 in (blue) dark
gray, and for oscillator 3 in (green) light gray. The corresponding
classical dynamics are shown with a dashed gray line. Note, all
quantities are dimensionless.

pectation values match very well indeed with those of the
equivalent classical system.

IV. CONCLUSION

For any given $ and an initially localized state there will
be some agreement between the dynamics of the classical
system and the evolution of the quantum expectation values
of the corresponding quantum operators. However, after a
short period of time the quantum state vector will begin to
delocalize and differences between the predictions of each
theory become apparent. We have demonstrated, by localiz-
ing the state vector through measurement of the position of
one or all components of the system, that near classical-like
dynamics can be recovered through unravelling the master
equation. For this work we have chosen quantum state diffu-
sion. However, it is likely that any other unravelling will
produce similar results. Such detailed analysis is beyond the
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scope of this work and would belong in a more in depth
study. We also note, as a subject for future study, that it
would be interesting to determine the conditions under which
measurement of a subset of the degrees of freedom of an
N-body system results in the localization of the state vector.

Finally we would like to observe that following [28] it
would be interesting to characterize the entanglement be-
tween the components of this system. As it may well be the
case that for this example, as well as the one studied in [28],
that the entanglement does not necessarily vanish in the clas-
sical limit. Unfortunately current restrictions on computa-
tional power prevent us from conducting this study at the
present time. However, from the last result presented here we
intuitively feel that there must persistently exist at least a
small degree of entanglement between the first component
and each of the other two. In order to justify this statement
we propose the following argument. First, consider the ex-
tension to the tensor product space of the Lindblad operator,
explicitly this is kg, ® 1,® 15. Now, by examining Eq. (1)
we see that if the state of the system was separable, the last
two terms (those responsible for the localization of |i))
would not affect the components of the state vector for the
second and third degrees of freedom. As introduction of this
environmental degree of freedom localizes the state vector
and result in the recovery of a classical-like trajectory, we
therefore propose that the state vector must possess some
nonzero entanglement.
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